Quadratic sequences

Write the first 3 terms of a sequence with n th term:	What value(s) is / are in both these sequences?	Sketch the graphs of these sequences by plotting n (x -axis)
1) 6n -1	Sequence with n th term: n ² + 2n - 4	against the n th term (y-axis) What can you deduce from the graphs?
2) $10 - \frac{2}{3}n$	Sequence with n th term: n + 2	Sequence 1: n ² – 3 Sequence 2: 2n + 5
3) 0.5n ² + 2.5		
4) 3n ² + 2n +1		20
		16
For a given sequence,	Find the equation of this graph from its table of coordinates:	
n^{th} term $\propto n^2$	x 1 2 3 4	10
If the constant of proportionality is 5, what is the 60 th value of the	y -2 5 14 25	5
sequence? What type of sequence is this?		
Circle the value that is NOT a term of the sequence: 1) $n^2 + 5$ {14, 41, 57, 105}	What is the second difference of this sequence?	Match the nth term to a correct description of the terms in the sequence:
2) $n^2 - 1$ {15, 35, 63, 82}	-1, 2, 9, 20	n ² + 1 Always even
3) $2n^2$ {108, 116, 128, 162}		n ² + n Always odd
4) n ² + 10n {1, 38, 56, 119}		$n^2 \div 3$ Sometimes even,
4/11 + 1011 {1, 36, 36, 119}	Is this an arithmetic sequence? How do you know?	sometimes even,
	2, 10,, 38.,	2n ² Sometimes an integer
	Fill in the missing terms	$n^2 + 3n + \frac{3}{5}$ Never an integer
What is the n th term of these sequences?		What's the equation of this graph?
1) 6, 9, 14, 21		
2) 12, 19, 26,33		4
3) 3, 9, 17, 39, 53		
4) 0, 6, 14, 24, 36	What is the name of this sequence?	
Which of these is an arithmetic sequence?	What is the n th term for this sequence?	
Are any of these geometric sequences?		-2 -1 O 1 2 3 $4 \times x$